首页> 外文OA文献 >Deep Residual Learning for Weakly-Supervised Relation Extraction
【2h】

Deep Residual Learning for Weakly-Supervised Relation Extraction

机译:弱监督关系抽取的深度剩余学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Deep residual learning (ResNet) is a new method for training very deep neuralnetworks using identity map-ping for shortcut connections. ResNet has won theImageNet ILSVRC 2015 classification task, and achieved state-of-the-artperformances in many computer vision tasks. However, the effect of residuallearning on noisy natural language processing tasks is still not wellunderstood. In this paper, we design a novel convolutional neural network (CNN)with residual learning, and investigate its impacts on the task of distantlysupervised noisy relation extraction. In contradictory to popular beliefs thatResNet only works well for very deep networks, we found that even with 9 layersof CNNs, using identity mapping could significantly improve the performance fordistantly-supervised relation extraction.
机译:深度残差学习(ResNet)是一种使用身份映射进行快捷连接来训练非常深的神经网络的新方法。 ResNet赢得了ImageNet ILSVRC 2015分类任务,并在许多计算机视觉任务中取得了最先进的性能。但是,残余学习对嘈杂的自然语言处理任务的影响仍未得到很好的理解。在本文中,我们设计了一种带有残差学习的新型卷积神经网络,并研究了其对远程监督噪声关系提取任务的影响。与人们普遍认为ResNet仅适用于非常深的网络相反,我们发现即使使用9层CNN,使用身份映射也可以显着提高远程监督关系提取的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号